These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterizing residue transfer efficiencies using a fluorescent imaging technique.
    Author: Cohen Hubal EA, Suggs JC, Nishioka MG, Ivancic WA.
    Journal: J Expo Anal Environ Epidemiol; 2005 May; 15(3):261-70. PubMed ID: 15305170.
    Abstract:
    To reduce the uncertainty associated with current estimates of children's exposure to pesticides by dermal contact and indirect ingestion, residue transfer data are required. Prior to conducting exhaustive studies, a screening study to identify the important parameters for characterizing these transfers was designed. A fluorescence imaging system was developed (Ivancic et al., in press) to facilitate collection of surface residue transfer data for repeated contacts. Next, parameters that affect residue transfer from surface-to-skin, skin-to-other objects, and skin-to-mouth were evaluated using the imaging system and the fluorescent tracer riboflavin as a surrogate for pesticide residues. Riboflavin was applied as a residue to surfaces of interest. Controlled transfer experiments were conducted by varying contact parameters with each trial. The mass of a tracer transferred was measured and the contact surface area estimated using video imaging techniques. Parameters evaluated included: surface type, surface loading, contact motion, pressure, duration, and skin condition. Transfers both onto, and off of, the hand were measured. To efficiently identify parameter changes resulting in significant effects, the Youden ruggedness test was used to select the combination of parameters varied in each contact trial. In this way, more than one parameter could be varied at a time and the number of trials required was minimized. Results of this study showed that surface loading and skin condition (significant at alpha=0.05) are among the important parameters for characterizing residue transfers of riboflavin. Duration of contact within the time range investigated does not have a significant effect on transfer of this tracer. Results of this study demonstrate the potential for collecting dermal transfer data using the Ivancic et al. fluorescence imaging system and provide preliminary data to reduce uncertainty associated with estimating dermal exposures resulting from contact with residue-contaminated surfaces. These data will also aid in determining what additional residue transfer data should be collected and what type of microactivity data are needed to estimate dermal and indirect ingestion exposure to residues on household surfaces.
    [Abstract] [Full Text] [Related] [New Search]