These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of 6-aminochrysene to genotoxic products by different forms of rat liver cytochrome P450 in an O-acetyltransferase-overexpressing Salmonella typhimurium strain (NM2009). Author: Yamazaki H, Shimada T. Journal: Biochem Pharmacol; 1992 Sep 01; 44(5):913-20. PubMed ID: 1530660. Abstract: Metabolic activation of a potent mutagen, 6-aminochrysene, to genotoxic products in a newly developed tester strain, Salmonella typhimurium NM2009, was studied in a rat liver microsomal monooxygenase system containing cytochrome P450 (P450). Since the tester strain was constructed by introducing an O-acetyltransferase gene into the original strain S. typhimurium TA1535/pSK1002, it is highly sensitive toward the reactive metabolites of carcinogenic arylamines. DNA-damaging activities of 6-aminochrysene were detected at very low concentrations of substrate (between 0.01 and 0.2 microM) and liver microsomes (from 0.2 to 2 micrograms protein/mL) in the S. typhimurium NM2009 strain. Thus, the potency of genotoxic activities induced by 6-aminochrysene was about 10- to 20-times greater than those induced by the well-known mutagens 2-aminoanthracene and 2-amino-3,5-dimethylimidazo[4,5-f]quinoline. Liver microsomes isolated from rats treated with phenobarbital (PB) and a polychlorinated biphenyl mixture, Kanechlor 500, catalyzed very efficiently the activation of 6-aminochrysene to genotoxic metabolites. Treatment of rats with beta-naphthoflavone (BNF) and with dexamethasone also caused moderate induction of the microsomal activation of 6-aminochrysene. Studies employing immunoinhibition of microsomal catalytic activities and reconstitution with purified P450 enzymes suggested that the most important enzymes involved in the activation of 6-aminochrysene were P450 2B1 and 2B2; other enzymes including P450 1A1 and 1A2 participated to some extent. We also found that the microsomal activation of 6-aminochrysene was catalyzed more effectively in an acetyltransferase-overexpressing strain (NM2009) than in the original TA1535/pSK1002 strain and that these activities could be inhibited by an acetyltransferase inhibitor, pentachlorophenol, in liver microsomes from PB-treated rats, but not in those from BNF-treated rats. These results suggest that the P450/acetyltransferase system is one of the most important catalysts for the activation of 6-aminochrysene in liver microsomes of PB-treated rats, and that activation by BNF-induced P450 enzymes occurs by different mechanisms, probably through the ring oxidation pathway.[Abstract] [Full Text] [Related] [New Search]