These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Histamine H3-receptor-induced attenuation of norepinephrine exocytosis: a decreased protein kinase a activity mediates a reduction in intracellular calcium.
    Author: Seyedi N, Mackins CJ, Machida T, Reid AC, Silver RB, Levi R.
    Journal: J Pharmacol Exp Ther; 2005 Jan; 312(1):272-80. PubMed ID: 15306634.
    Abstract:
    We had reported that activation of presynaptic histamine H(3)-receptors inhibits norepinephrine exocytosis from depolarized cardiac sympathetic nerve endings, an action associated with a marked decrease in intraneuronal Ca(2+) that we ascribed to a decreased Ca(2+) influx. An H(3)-receptor-mediated inhibition of cAMP-dependent phosphorylation of Ca(2+) channels could cause a sequential attenuation of Ca(2+) influx, intraneuronal Ca(2+) and norepinephrine exocytosis. We tested this hypothesis in sympathetic nerve endings (cardiac synaptosomes) expressing native H(3)-receptors and in human neuroblastoma SH-SY5Y cells transfected with H(3)-receptors. Norepinephrine exocytosis was elicited by K(+) or by stimulation of adenylyl cyclase with forskolin. H(3)-receptor activation markedly attenuated the K(+)- and forskolin-induced norepinephrine exocytosis; pretreatment with pertussis toxin prevented this effect. Similar to forskolin, 8-bromo-cAMP elicited norepinephrine exocytosis but, unlike forskolin, it was unaffected by H(3)-receptor activation, demonstrating that inhibition of adenylyl cyclase is a pivotal step in the H(3)-receptor transductional cascade. Indeed, we found that H(3)-receptor activation attenuated norepinephrine exocytosis concomitantly with a decrease in intracellular cAMP and PKA activity in SH-SY5Y-H(3) cells. Moreover, pharmacological PKA inhibition acted synergistically with H(3)-receptor activation to reduce K(+)-induced peak intracellular Ca(2+) in SH-SY5Y-H(3) cells and norepinephrine exocytosis in cardiac synaptosomes. Furthermore, H(3)-receptor activation synergized with N- and L-type Ca(2+) channel blockers to reduce norepinephrine exocytosis in cardiac synaptosomes. Our findings suggest that the H(3)-receptor-mediated inhibition of norepinephrine exocytosis from cardiac sympathetic nerves results sequentially from H(3)-receptor-G(i)/G(o) coupling, inhibition of adenylyl cyclase activity, and decreased cAMP formation, leading to diminished PKA activity, and thus, decreased Ca(2+) influx through voltage-operated Ca(2+) channels.
    [Abstract] [Full Text] [Related] [New Search]