These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chronic low-frequency stimulation upregulates uncoupling protein-3 in transforming rat fast-twitch skeletal muscle.
    Author: Putman CT, Dixon WT, Pearcey JA, Maclean IM, Jendral MJ, Kiricsi M, Murdoch GK, Pette D.
    Journal: Am J Physiol Regul Integr Comp Physiol; 2004 Dec; 287(6):R1419-26. PubMed ID: 15308491.
    Abstract:
    The purpose of this investigation was to examine the temporal changes in uncoupling protein (UCP)-3 expression, as well as related adaptive changes in mitochondrial density and fast-to-slow fiber type transitions during chronically enhanced contractile activity. We examined the effects of 1-42 days of chronic low-frequency electrical stimulation (CLFS), applied to rat tibialis anterior (TA) for 10 h/day, on the expression of UCP-3 and concomitant changes in myosin heavy chain (MHC) protein expression and increases in oxidative capacity. UCP-3 protein content increased from 1 to 12 days, reaching 1.5-fold over control (P < 0.0005); it remained elevated for up to 42 days. In contrast, UCP-3 mRNA decreased in response to CLFS, reaching a level that was threefold lower than control (P < 0.0007). The activities of the mitochondrial reference enzymes citrate synthase (EC 4.1.3.7) and 3-hydroxyacyl-CoA-dehydrogenase (EC 1.1.1.35), which are known to increase in proportion to mitochondrial density, progressively increased up to an average of 2.3-fold (P < 0.00001). These changes were accompanied by fast-to-slow fiber type transitions, characterized by a shift in the pattern of MHC expression (P <0.0002): MHCI and MHCIIa expression increased by 1.7- and 4-fold, whereas MHCIIb displayed a 2.4-fold reduction. We conclude that absolute increases in UCP-3 protein content in the early adaptive phase were associated with the genesis of mitochondria containing a normal complement of UCP-3. However, during exposure to long-term CLFS, mitochondria were generated with a lower complement of UCP-3 and coincided with the emergence of a growing population of oxidative type IIA fibers.
    [Abstract] [Full Text] [Related] [New Search]