These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A rapid biosensor for viable B. anthracis spores. Author: Baeumner AJ, Leonard B, McElwee J, Montagna RA. Journal: Anal Bioanal Chem; 2004 Sep; 380(1):15-23. PubMed ID: 15309363. Abstract: A simple membrane-strip-based biosensor assay has been combined with a nucleic acid sequence-based amplification (NASBA) reaction for rapid (4 h) detection of a small number (ten) of viable B. anthracis spores. The biosensor is based on identification of a unique mRNA sequence from one of the anthrax toxin genes, the protective antigen ( pag), encoded on the toxin plasmid, pXO1, and thus provides high specificity toward B. anthracis. Previously, the anthrax toxins activator ( atxA) mRNA had been used in our laboratory for the development of a biosensor for the detection of a single B. anthracis spore within 12 h. Changing the target sequence to the pag mRNA provided the ability to shorten the overall assay time significantly. The vaccine strain of B. anthracis (Sterne strain) was used in all experiments. A 500-microL sample containing as few as ten spores was mixed with 500 microL growth medium and incubated for 30 min for spore germination and mRNA production. Thus, only spores that are viable were detected. Subsequently, RNA was extracted from lysed cells, selectively amplified using NASBA, and rapidly identified by the biosensor. While the biosensor assay requires only 15 min assay time, the overall process takes 4 h for detection of ten viable B. anthracis spores, and is shortened significantly if more spores are present. The biosensor is based on an oligonucleotide sandwich-hybridization assay format. It uses a membrane flow-through system with an immobilized DNA probe that hybridizes with the target sequence. Signal amplification is provided when the target sequence hybridizes to a second DNA probe that has been coupled to liposomes encapsulating the dye sulforhodamine B. The amount of liposomes captured in the detection zone can be read visually or quantified with a hand-held reflectometer. The biosensor can detect as little as 1 fmol target mRNA (1 nmol L(-1)). Specificity analysis revealed no cross-reactivity with 11 organisms tested, among them closely related species such as B. cereus, B. megaterium, B. subtilis, B. thuringiensis, Lactococcus lactis, Lactobacillus plantarum, and Chlostridium butyricum. Also, no false positive signals were obtained from nonviable spores. We suggest that this inexpensive biosensor is a viable option for rapid, on-site analysis providing highly specific data on the presence of viable B. anthracis spores.[Abstract] [Full Text] [Related] [New Search]