These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cancer risk estimates for gamma-rays with regard to organ-specific doses. Part I: All solid cancers combined.
    Author: Walsh L, Rühm W, Kellerer AM.
    Journal: Radiat Environ Biophys; 2004 Sep; 43(3):145-51. PubMed ID: 15309386.
    Abstract:
    A previous analysis of the solid cancer mortality data for 1950-1990 from the Japanese life-span study of the A-bomb survivors has assessed the solid cancer risk coefficients for gamma-rays in terms of the low dose risk coefficient ERR/Gy, i.e. the initial slope of the ERR vs. dose relation, and also in terms of the more precisely estimated intermediate dose risk coefficient, ERR(D1)/D1, for a reference dose, D1, which was chosen to be 1 Gy. The computations were performed for tentatively assumed values 20-50 of the neutron RBE against the reference dose and in terms of organ-averaged doses, rather than the traditionally applied colon doses. The resulting risk estimate for a dose of 1 Gy was about half as large as the most recent UNSCEAR estimate. The present assessment repeats the earlier analysis with two major extensions. It parallels computations based on organ-average doses with computations based on organ-specific doses and it updates the previous results by using the cancer mortality data for 1950-1997 which have recently been made available. With an assumed neutron RBE of 35, the resulting intermediate dose estimate of the lifetime attributable risk (LAR) for solid cancer mortality for a working population (ages 25-65 years) is 0.059/Gy with the attained-age model, and 0.044/Gy with the age-at-exposure model. For a population of all ages, 0.055/Gy is obtained with the attained-age model and 0.073/Gy with the age-at-exposure model. These values are up to about 20% higher than those obtained in the previous analysis with the 1950-1990 data. However, considerably more curvature in the dose-effect relation is now supported by the computations. A dose and dose-rate reduction factor DDREF=2 is now much more in line with the data than before. With this factor the LAR for a working population is--averaged over the age-at-exposure and the age-attained model--equal to 0.026/Gy. This is only half as large as the current ICRP estimate which is also based on the assumption DDREF=2.
    [Abstract] [Full Text] [Related] [New Search]