These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential effects of venous stasis and arterial insufficiency on tissue oxygenation in myocutaneous island flaps: an experimental study in pigs. Author: Hjortdal VE, Hauge E, Hansen ES. Journal: Plast Reconstr Surg; 1992 Mar; 89(3):521-9. PubMed ID: 1531542. Abstract: The supply, consumption, and tissue tension of oxygen were studied in experimental bilateral myocutaneous island flaps in five control pigs and in eight pigs during progressive 1-hour intervals of flap ischemia. Progressive ischemia was obtained by partial to complete clamping of the artery in one flap, producing arterial insufficiency, and simultaneous clamping of the vein in the other flap, producing venous stasis. Blood flow was reduced to 50, 25, and 0 percent of baseline. In the arterial insufficiency flaps, the oxygen tension in subcutaneous tissue, muscle, and venous outflow was significantly reduced once blood flow was reduced to 50 percent of baseline. Oxygen consumption during partial vessel occlusion was lower in the venous stasis flaps than in the arterial insufficiency flaps when blood flow was reduced to 25 percent of baseline, suggesting either that cellular metabolism is reduced in the venous stasis flaps or that the oxygen which is delivered is unavailable for the cells. Increased presence of tissue fluid in the venous stasis flap inhibits the diffusion of oxygen through the interstitial tissue, and this may explain the lower oxygen consumption. During 3 hours of reperfusion, increased blood flow was observed in the arterial insufficiency flaps, whereas blood flow in the venous stasis flaps was sluggish. The arterial insufficiency flaps recovered more rapidly than the venous stasis flaps during the first hour of reperfusion, judged by the rate of increase in oxygen tension and the higher venous oxygen tension. Oxygen tension increased more rapidly in muscle than in subcutaneous tissue.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]