These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enantioselectivity of carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone by tissue fractions from human and rat and by enzymes isolated from human liver.
    Author: Breyer-Pfaff U, Martin HJ, Ernst M, Maser E.
    Journal: Drug Metab Dispos; 2004 Sep; 32(9):915-22. PubMed ID: 15319331.
    Abstract:
    Detoxication of the tobacco-specific carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in humans is mainly due to carbonyl reduction to the chiral alcohol 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL), which undergoes glucuronidation and excretion. NNAL has a carcinogenic potential with (S)-NNAL being more tumorigenic in the mouse. Therefore, the enantioselectivity of NNK reductases seems toxicologically relevant. NNAL enantiomers were measured by a novel high-performance liquid chromatography procedure. The aldo-keto reductases AKR1C1, 1C2, and 1C4 and carbonyl reductase purified from human liver cytosol produced NNAL with >90% (S)-enantiomer in accordance with the enantioselectivity of NNK reduction by cytosol from liver, placenta, and lung. In contrast, the (R)-NNAL content was 35% on NNK reduction with 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) purified from human liver microsomes, but around 70% with human microsomes. The selectivity for (R)-NNAL formation was still higher with microsomes from placenta (87%) and lung (89% in 10 of 11 surgical samples). Microsomes from lung of one patient reduced NNK at a much lower rate, with production of 14% (R)-NNAL. This points to predominant reduction in microsomes by an enzyme with selectivity for (R)-NNAL formation that was apparently absent from the lung of one patient. Experiments with 18beta-glycyrrhetinic acid, a potent inhibitor of 11beta-HSD1, also indicated a minor or no role for 11beta-HSD1. Rat liver and lung microsomes produced NNAL with about 33% and 55% (R)-enantiomer and a mean contribution of 11beta-HSD1 of 12% and 32%, respectively. Multiple enzymes seem to participate in NNK reduction in human and rat tissues.
    [Abstract] [Full Text] [Related] [New Search]