These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Epac- and Ca2+ -controlled activation of Ras and extracellular signal-regulated kinases by Gs-coupled receptors.
    Author: Keiper M, Stope MB, Szatkowski D, Böhm A, Tysack K, Vom Dorp F, Saur O, Oude Weernink PA, Evellin S, Jakobs KH, Schmidt M.
    Journal: J Biol Chem; 2004 Nov 05; 279(45):46497-508. PubMed ID: 15319437.
    Abstract:
    We have recently reported that two typical Gs-coupled receptors, the beta2-adrenergic receptor and the receptor for prostaglandin E1, stimulate phospholipase C-epsilon (PLC-epsilon) and increase intracellular Ca2+ concentration ([Ca2+]i) in HEK-293 cells and N1E-115 neuroblastoma cells, respectively, by a pathway involving Epac1, a cAMP-activated and Rap-specific guanine nucleotide exchange factor (GEF), and the GTPase Rap2B. Here we have demonstrated that these Gs-coupled receptors use this pathway to activate H-Ras and the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Specifically, agonist activation of the receptors resulted in activation of H-Ras and ERK1/2. The latter action was suppressed by dominant negative H-Ras, but not Rap1A. The receptor actions were independent of protein kinase A but fully mimicked by an Epac-specific cAMP analog as well as by a constitutively active Rap2B mutant. On the other hand, a cAMP-binding-deficient Epac1 mutant, the Rap GTPase-activating proteinII, and a dominant negative Rap2B mutant suppressed receptor- and Epac-mediated activation of H-Ras and ERK1/2. Finally, we have demonstrated that activation of H-Ras and ERK1/2 requires the lipase activity of PLC-epsilon and the subsequent [Ca2+]i increase, suggesting that H-Ras activation is mediated by a Ca2+ -activated GEF. In line with this hypothesis, receptor-mediated activation of H-Ras and ERK1/2 was strongly enhanced by expression of RasGRP1, a Ca2+ -regulated Ras-GEF. Collectively, our data indicated that Gs-coupled receptors can activate H-Ras and subsequently the mitogen-activated protein kinases ERK1/2 by a Ca2+ -activated Ras-GEF, possibly RasGRP1, mediated by cAMP-activated Epac proteins, which then lead via Rap2B and PLC-epsilon stimulation to [Ca2+]i increase.
    [Abstract] [Full Text] [Related] [New Search]