These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the formate (for) locus, which encodes the cytosolic serine hydroxymethyltransferase of Neurospora crassa.
    Author: McClung CR, Davis CR, Page KM, Denome SA.
    Journal: Mol Cell Biol; 1992 Apr; 12(4):1412-21. PubMed ID: 1532227.
    Abstract:
    Serine hydroxymethyltransferase (SHMT) occupies a central position in one-carbon (C1) metabolism, catalyzing the reaction of serine and tetrahydrofolate to yield glycine and 5,10-methylenetetrahydrofolate. Methylenetetrahydrofolate serves as a donor of C1 units for the synthesis of numerous compounds, including purines, thymidylate, lipids, and methionine. We provide evidence that the formate (for) locus of Neurospora crassa encodes cytosolic SHMT. The for+ gene was localized to a 2.8-kb BglII fragment by complementation (restoration to formate-independent growth) of a strain carrying a recessive for allele, which confers a growth requirement for formate. The for+ gene encodes a polypeptide of 479 amino acids which shows significant similarity to amino acid sequences of SHMT from bacterial and mammalian sources (47 and 60% amino acid identity, respectively). The for+ mRNA has several different start and stop sites. The abundance of for+ mRNA increased in response to amino acid imbalance induced by glycine supplementation, suggesting regulation by the N. crassa cross-pathway control system, which is analogous to general amino acid control in Saccharomyces cerevisiae. This was confirmed by documenting that for+ expression increased in response to histidine limitation (induced by 3-amino-1,2,4-triazole) and that this response was dependent on the presence of a functional cross-pathway control-1 (cpc-1) gene, which encodes CPC1, a positively acting transcription factor. There are at least five potential CPC1 binding sites upstream of the for+ transcriptional start, as well as one that exactly matches the consensus CPC1 binding site in the first intron of the for+ gene.
    [Abstract] [Full Text] [Related] [New Search]