These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterisation of cerivastatin as a P-glycoprotein substrate: studies in P-glycoprotein-expressing cell monolayers and mdr1a/b knock-out mice.
    Author: Kivistö KT, Zukunft J, Hofmann U, Niemi M, Rekersbrink S, Schneider S, Luippold G, Schwab M, Eichelbaum M, Fromm MF.
    Journal: Naunyn Schmiedebergs Arch Pharmacol; 2004 Aug; 370(2):124-30. PubMed ID: 15322734.
    Abstract:
    The aim of this study was to characterise the role of the efflux transporter P-glycoprotein in the disposition of cerivastatin. We investigated directional transport characteristics of [14C]cerivastatin across cell monolayers expressing P-glycoprotein (Caco-2 and L-MDR1) and disposition of cerivastatin in mice with disrupted mdr1a and mdr1b genes. The mice were given orally 1 mg/kg cerivastatin and plasma and tissue samples for analysis of cerivastatin were obtained 10, 20, or 30 min after drug administration. Four knock-out mice and four wild-type mice were studied at each time point. In addition, the hypothesis that gemfibrozil-mediated inhibition of P-glycoprotein contributes to the interaction between gemfibrozil and cerivastatin was tested in Caco-2 cells. The apparent permeability coefficient (P(app)) value for the basal-to-apical transport of cerivastatin in Caco-2 and L-MDR1 cell monolayers was 2.4 times (P<0.001) and 3.8 times (P<0.001) as high as the apical-to-basal P(app) value respectively. The P-glycoprotein inhibitor PSC-833 (1 microM) inhibited the net basal-to-apical transport of cerivastatin in Caco-2 monolayers by 35% (P<0.01) and the MRP inhibitor MK-571 (10 microM) by 50% (P<0.01). At concentrations up to 250 microM, gemfibrozil showed no significant effects on the net transport of cerivastatin in Caco-2 cells. The concentration of cerivastatin in the brain at 30 min was 3.1 times higher in the knock-out mice than in the wild-type mice (P<0.05). The brain-to-plasma cerivastatin concentration ratio at 20 min and 30 min was 2.1 (P<0.05) and 3.6 times (P<0.05) higher respectively in the knock-out animals compared with the wild-type animals. Collectively, these results indicate that cerivastatin is a P-glycoprotein substrate, although other transporters probably contribute to cerivastatin transport in humans. As several statins are P-glycoprotein substrates, beneficial as well as adverse effects of the statins might be affected by interindividual differences in P-glycoprotein expression or function caused by, e.g., the MDR1 polymorphism.
    [Abstract] [Full Text] [Related] [New Search]