These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dimeric interaction between the cytoplasmic domains of the Na+/H+ exchanger NHE1 revealed by symmetrical intermolecular cross-linking and selective co-immunoprecipitation.
    Author: Hisamitsu T, Pang T, Shigekawa M, Wakabayashi S.
    Journal: Biochemistry; 2004 Aug 31; 43(34):11135-43. PubMed ID: 15323573.
    Abstract:
    To investigate the oligomeric structure of Na(+)/H(+) exchanger 1 (NHE1), permeabilized cells and membranes from cells expressing NHE1 variants were treated with the oxidizing agent Cu(2+)/o-phenanthroline or the bifunctional sulfhydryl reagent methanethiosulfonate. These treatments resulted in symmetrical intermolecular cross-linking at intrinsic (Cys(794) and Cys(561)) or 15 exogenous cysteine residues introduced into the distal carboxyl- (C-) terminal cytoplasmic domain (after aa 600) but not at intrinsic Cys(538) because of masking by its tight association with calcineurin B-homologous protein. Cross-linking was abolished in membranes solubilized with sodium dodecyl sulfate, which dissociates oligomeric NHE1, while it was preserved in those treated with Triton X-100. In addition, treatment with cross-linkers did not produce the tetrameric forms of NHE1 mutants with two cysteine residues. Thus, cross-linking presumably occurs between adjacent C-termini of the NHE1 dimer but not by a stochastic process via random collision of NHE1 molecules. The observations suggest that at least the distal C-termini of the NHE1 dimer are flexible or mobile and are thereby capable of easily making contact with each other over the large cytoplasmic portion of the molecule. Furthermore, co-immunoprecipitation experiments showed that the proximal C-termini (aa 503-580) have a strong propensity to interact directly with each other in parallel. Deletion of aa 562-579 resulted in disruption of disulfide cross-linking between the C-termini and markedly reduced the intracellular pH sensitivity of Na(+)/H(+) exchange, suggesting that the dimeric interaction in this region may control the pH-dependent regulation of NHE1.
    [Abstract] [Full Text] [Related] [New Search]