These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Incidence, pathology and prevention of keel bone deformities in the laying hen.
    Author: Fleming RH, McCormack HA, McTeir L, Whitehead CC.
    Journal: Br Poult Sci; 2004 Jun; 45(3):320-30. PubMed ID: 15327118.
    Abstract:
    1. As a baseline study of the nature and incidence of keel deformities in laying hens, keel condition was examined in three different strains of hen from a total of 4 different caged environments (two commercial farms and two experimental farms). Incidence of keel deformity on farms in end of lay hens ranged from 2.6 to 16.7%. Only 0.8% of younger 15-week-old pullets had deformed keels. 2. Incidence of keel deformities was unchanged in 100 birds sampled from a free-range system compared to conventional caged siblings at the same farm. 3. Keel condition was also examined in 5 selected generations of a study involving the use of a body-weight-restricted selection index for skeletal improvement. Divergent selection for skeletal characteristics decreased incidence of keel deformity and improved radiographic density (RD) in high bone index (BI) hens compared to low BI hens in all selected generations. Male high BI keels were also improved compared to low BI. Shear strength measured in normal keels in generation 6 (G6) of the genetic study was improved in high BI hens compared to low BI hens. For all hens in the genetic study, those with normal keels had stronger tibiotarsus and humerus breaking strengths than hens with deformed keels. 4. Histopathology of keels representative of different deformities showed the presence of fracture callus material and new bone in all cases. This establishes that deformities are a result of trauma and are not developmental in origin. 5. Ash contents of keels, tibiae and humeri showed no differences between hens with normal and deformed keels. There were no differences in indicators of collagen cross-linkage in other bones between hens with normal keels and those with deformed keels. 6. It is concluded that lack of bone mass is the underlying cause of keel fracture and deformity in laying hens, rather than qualitative changes in bone, and that genetic selection can improve keel quality and prevent deformity.
    [Abstract] [Full Text] [Related] [New Search]