These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Muscular adaptations to computer-guided strength training with eccentric overload.
    Author: Friedmann B, Kinscherf R, Vorwald S, Müller H, Kucera K, Borisch S, Richter G, Bärtsch P, Billeter R.
    Journal: Acta Physiol Scand; 2004 Sep; 182(1):77-88. PubMed ID: 15329060.
    Abstract:
    AIMS: In order to investigate the muscular adaptations to a novel form of strength training, 18 male untrained subjects performed 4 weeks of low resistance-high repetition knee extension exercise. METHODS: Nine of them trained on a conventional weight resistance device (Leg curler, CON/ECC group), with loads equivalent to 30% of the concentric one-repetition maximum (1RM) for both the concentric and eccentric phase of movement. The other nine trained on a newly developed computer-driven device (CON/ECC-OVERLOAD group) with the concentric load equivalent to 30% of the concentric 1RM and the eccentric load equivalent to 30% of the eccentric 1RM. RESULTS: Training resulted in significantly (P < or = 0.05) increased peak torque and a tendency (P=0.092) to increased muscle cross-sectional area for the CON/ECC-OVERLOAD but not the CON/ECC group, while strength endurance capacity was significantly (P < or = 0.05) increased in the CON/ECC group only. RT-PCR revealed significantly increased myosin heavy chain (MHC) IIa and lactate dehydrogenase (LDH) A mRNAs, a tendency for increased MHC IIx mRNA (P = 0.056) and high correlations between the changes in MHC IIx and LDH A mRNAs (r=0.97, P=0.001) in the CON/ECC-OVERLOAD group. CONCLUSIONS: These results indicate a shift towards a more type II dominated gene expression pattern in the vasti laterales muscles of the CON/ECC-OVERLOAD group in response to training. We suggest that the increased eccentric load in the CON/ECC-OVERLOAD training leads to distinct adaptations towards a stronger, faster muscle.
    [Abstract] [Full Text] [Related] [New Search]