These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Down-regulation of inositol 1,4,5-trisphosphate receptor in cells stably expressing the constitutively active angiotensin II N111G-AT(1) receptor. Author: Auger-Messier M, Arguin G, Chaloux B, Leduc R, Escher E, Guillemette G. Journal: Mol Endocrinol; 2004 Dec; 18(12):2967-80. PubMed ID: 15331757. Abstract: The diverse cellular changes brought about by the expression of a constitutively active receptor are poorly understood. QBI-human embryonic kidney 293A cells stably expressing the constitutively active N111G-AT(1) receptor (N111G cells) showed elevated levels of inositol phosphates and frequent spontaneous intracellular Ca(2+) oscillations. Interestingly, Ca(2+) transients triggered with maximal doses of angiotensin II were much weaker in N111G cells than in wild-type cells. These blunted responses were observed independently of the presence or absence of extracellular Ca(2+) and were also obtained when endogenous muscarinic and purinergic receptors were activated, revealing a heterologous desensitization process. The desensitized component of the Ca(2+) signaling cascade was neither the G protein G(q) nor phospholipase C. The intracellular Ca(2+) store of N111G cells and their mechanism of Ca(2+) entry also appeared to be intact. The most striking adaptive response of N111G cells was a down-regulation of their inositol 1,4,5-trisphosphate receptor (IP(3)R) as revealed by reduced IP(3)-induced Ca(2+) release, lowered [(3)H]IP(3) binding capacity, diminished IP(3)R immunoreactivity, and accelerated IP(3)R degradation involving the lysosomal pathway. Treatment with the inverse agonist EXP3174 reversed the desensitized phenotype of N111G cells. Down-regulation of IP(3)R represents a reversible adaptive response to protect cells against the adverse effects of constitutively active Ca(2+)-mobilizing receptors.[Abstract] [Full Text] [Related] [New Search]