These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Steady-state brain concentrations of antihistamines in rats: interplay of membrane permeability, P-glycoprotein efflux and plasma protein binding. Author: Mahar Doan KM, Wring SA, Shampine LJ, Jordan KH, Bishop JP, Kratz J, Yang E, Serabjit-Singh CJ, Adkison KK, Polli JW. Journal: Pharmacology; 2004 Oct; 72(2):92-8. PubMed ID: 15331914. Abstract: The purpose of this study was to measure the in vivo brain distribution of antihistamines and assess the influence of in vitro permeability, P-glycoprotein (Pgp) efflux, and plasma protein binding. Six antihistamines (acrivastine, chlorpheniramine, diphenhydramine doxylamine, fexofenadine, terfenadine) were selected based on previously reported in vitro permeability and Pgp efflux properties and dosed intravenously to steady-state plasma concentrations of 2-10 micromol/l in rats. Plasma and brain concentrations were measured by LC/MS/MS, and protein binding determined by ultrafiltration. Doxylamine, diphenhydramine and chlorpheniramine had brain-to-plasma concentration ratios of 4.34 +/- 1.26, 18.4 +/- 2.35 and 34.0 +/- 9.02, respectively. These drugs had high passive membrane permeability (>310 nm/s), moderate protein binding (71-84%) and were not Pgp substrates; features that yield high CNS penetration. In contrast, acrivastine and fexofenadine had low brain-to-plasma ratios of 0.072 +/- 0.014 and 0.018 + 0.002, consistent with low passive membrane permeability for both compounds (16.2 and 66 nm/s, respectively) and Pgp efflux. Finally, terfenadine had a brain-to-plasma ratio of 2.21 +/- 1.00 even though it underwent Pgp-mediated efflux (in vitro ratio = 2.88). Terfenadine's high passive permeability (285 nm/s) overcame the Pgp-mediated efflux to yield brain-to-plasma ratio >1. The brain-to-unbound plasma ratio was 22-fold higher suggesting that protein binding (96.3% bound) limited terfenadine's brain distribution. In conclusion, passive membrane permeability, Pgp-mediated efflux and/or high plasma protein binding influence the in vivo brain distribution of antihistamine drugs.[Abstract] [Full Text] [Related] [New Search]