These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of "insoluble" red dyewoods by high performance liquid chromatography-photodiode array detection (HPLC-PDA) fingerprinting.
    Author: Surowiec I, Nowik W, Trojanowicz M.
    Journal: J Sep Sci; 2004 Feb; 27(3):209-16. PubMed ID: 15334908.
    Abstract:
    The paper describes a high performance liquid chromatography-UV/Vis spectrometry detection analytical approach to the identification of some redwood species of historical importance in textile dyeing. The group of extracted dyestuffs considered as "insoluble" because of their non-aqueous or alkaline extraction conditions is present in the wood of the Pterocarpus family and Baphia nitida species. First, the crude extracts of tinctorial and related species and their chromatographic fingerprints were studied. This part of work shows that some species not yet mentioned in the literature have potential dyeing properties. Subsequent experiments performed on the redwood cargo of a 200-year-old archaeological shipwreck allowed identification of the water-logged wood species. Furthermore, the different methods of dyestuff extraction used for dyeing according to traditional recipes and their impact on analytical results were studied. They show that standard recovery obtained by acid hydrolysis of dyestuff from dyed yarns is inadequate. Hence, alternative solvent-based procedures were proposed. The identification of species in textile threads then becomes possible. The applied approach was validated by analysis of dyed reference yarns with some indications of crude material extraction mode. The employed method of analysis seems to be useful for "insoluble" wood species identification in cultural heritage artifacts as well as for phytochemical purposes, despite the fact that very few detected color compounds were chemically identified.
    [Abstract] [Full Text] [Related] [New Search]