These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Passive protection to bovine rotavirus (BRV) infection induced by a BRV VP8* produced in plants using a TMV-based vector.
    Author: Pérez Filgueira DM, Mozgovoj M, Wigdorovitz A, Dus Santos MJ, Parreño V, Trono K, Fernandez FM, Carrillo C, Babiuk LA, Morris TJ, Borca MV.
    Journal: Arch Virol; 2004 Dec; 149(12):2337-48. PubMed ID: 15338319.
    Abstract:
    We have previously reported on the use of a tobacco mosaic virus (TMV) vector TMV-30B to express foreign viral antigens for use as experimental immunogens. Here we describe the development of an improved TMV-30B vector that adds a sequence of 7 histidine residues to the C-terminus of recombinant proteins expressed in the vector. We used this TMV-30B-HISc vector to express the VP8* fragment of the VP4 protein from bovine rotavirus (BRV) strain C-486 in plants. Recombinant VP8* protein was purified from N. benthamiana leaves at 7 days post-inoculation by immobilized metal affinity chromatography. The plant-produced VP8* was initially detected using anti-His tag mAb and its antigenic nature was confirmed using both monoclonal and polyclonal specific antisera directed against BRV. Adult female mice, inoculated by the intraperinoteal route with an immunogen containing 4 microg of recombinant VP8*, developed a specific and sustained response to the native VP8* from the homologous BRV. Eighty five percent of suckling mice from immunized dams that were challenged with the homologous virus at the fifth day of age were protected from virus as compared to 35% of the pups from mothers immunized with a control protein. These results demonstrate that the plant-produced VP8* was able to induce passive protection in the new born through the immunization of dams. This suggests that the technology presented here provides a simple method for using plants as an inexpensive alternative source for production of recombinant anti-rotavirus antigens.
    [Abstract] [Full Text] [Related] [New Search]