These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamic changes of the anti- and pro-apoptotic proteins Bcl-w, Bcl-2, and Bax with Smac/Diablo mitochondrial release after photothrombotic ring stroke in rats.
    Author: Hu XL, Olsson T, Johansson IM, Brännström T, Wester P.
    Journal: Eur J Neurosci; 2004 Sep; 20(5):1177-88. PubMed ID: 15341589.
    Abstract:
    The anti-apoptotic proteins Bcl-w and Bcl-2 and the pro-apoptotic protein Bax may mediate cell death or survival via regulation of the mitochondria including second mitochondria-derived activator of caspase (Smac)/direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) release. This study aimed to explore alterations in Bcl-w, Bcl-2, and Bax and the relationship between these proteins and Smac/DIABLO by means of in situ hybridization, immunohistochemical (IHC) staining, and Western blots after low- and high-intensity photothrombotic ring stroke. At 4 h after low-intensity irradiation, we found widespread bcl-w overexpression on both the mRNA and protein levels in the bilateral cortex except the ring lesion region and in subcortical regions. A prolonged elevation of Bcl-2 with relatively unchanged Bax in the mitochondrial fraction was demonstrated from 4 to 72 h. These upregulated anti-apoptotic proteins combined with little Smac/DIABLO release might be associated with increased cell survival and thereby remarkable morphological recovery after low-intensity irradiation. After high-intensity irradiation, we observed decreased bcl-w and bcl-2 mRNA with increased Bcl-2 protein in the cytosolic fraction, whereas the Bax protein remained in scattered ischaemic cells in the ring lesion and the region at risk that corresponded with release of Smac/DIABLO from mitochondria to the cytosol at 1-24 h. These changes might be related to the massive cell death observed after high-intensity irradiation. Taken together, the balance and the location of anti-apoptotic proteins vs. pro-apoptotic proteins could be associated with the translocation of Smac/DIABLO from the mitochondria to the cytosol and therefore closely related to cell death or survival after focal cerebral ischaemia.
    [Abstract] [Full Text] [Related] [New Search]