These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Loss of SHP-1 phosphatase alters cytokine expression in the mouse hindbrain following cochlear ablation. Author: Zhao J, Lurie DI. Journal: Cytokine; 2004 Oct 07; 28(1):1-9. PubMed ID: 15341919. Abstract: Inflammatory cytokines in the central nervous system are largely modulated by glial cells and influence neuronal responses to CNS injury. The protein tyrosine phosphatase SHP-1, an intracellular regulator of many cytokine signaling pathways, has been implicated in mediating the activation of glia. There is a direct correlation between abnormally activated microglia and neuron loss within the SHP-1 deficient motheaten (me/me) mouse auditory brainstem after afferent injury. In order to determine whether loss of SHP-1 creates an aberrant cytokine environment driving the abnormal activation of me/me microglia, the expression of interleukin-4 (IL-4), interleukin-10 (IL-10), interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and interferon-gamma (IFN-gamma) was examined by enzyme-linked immunosorbent assay (ELISA). Normal uninjured me/me mice showed lower IL-10 but higher IL-1beta levels compared to wild-type. Following unilateral cochlear ablation, there is decreased expression of IL-4 and IL-10 in me/me brains compared to wild-type, but IL-1beta is significantly increased. These findings indicate that decreases in anti-inflammatory cytokines, in combination with increased expression of the pro-inflammatory cytokine IL-1beta, may initiate a robust inflammatory reaction within the me/me brain contributing to the neuronal degeneration in the deafferented me/me auditory brainstem. SHP-1 may therefore play a role in limiting CNS inflammation following injury and disease.[Abstract] [Full Text] [Related] [New Search]