These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson's disease.
    Author: Agnati LF, Leo G, Vergoni AV, Martínez E, Hockemeyer J, Lluis C, Franco R, Fuxe K, Ferré S.
    Journal: Brain Res Bull; 2004 Aug 30; 64(2):155-64. PubMed ID: 15342103.
    Abstract:
    Adenosine A2A receptors are a new target for drug development in Parkinson's disease. Some experimental and clinical data suggest that A2A receptor antagonists can provide symptomatic improvement by potentiating the effects of L-DOPA as well as a decrease in secondary effects such as L-DOPA-induced dyskinesia. L-DOPA-induced behavioral sensitization in unilateral 6-hydroxydopamine-lesioned rats is frequently used as an experimental model of L-DOPA-induced dyskinesia. In the present work this model was used to evaluate the effect of the A2A receptor agonist CGS 21680 and the A2A receptor antagonist MSX-3 on L-DOPA-induced behavioral sensitization and 6-hydroxydopamine-induced striatal dopamine denervation. L-DOPA-induced behavioral sensitization was determined as an increase in L-DOPA-induced abnormal involuntary movements and enhancement of apomorphine-induced turning behavior. Striatal dopamine innervation was determined by measuring tyrosine-hydroxylase immunoreactivity. Chronic administration of MSX-3 was not found to be effective at counteracting L-DOPA-induced behavioral sensitization. On the other hand, CGS 21680 completely avoided the development of L-DOPA-induced behavioral sensitization. The analysis of the striatal dopamine innervation showed that L-DOPA-CGS 21680 co-treatment conferred neuroprotection to the toxic effects of 6-hydroxydopamine. This neuroprotective effect was dependent on A2A and D2 receptor stimulation, since it was counteracted by MSX-3 and by the D2 receptor antagonist haloperidol. These results open new therapeutic avenues in early events in Parkinson's disease.
    [Abstract] [Full Text] [Related] [New Search]