These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+ homeostasis and fast-type sarcoplasmic reticulum Ca(2+)-ATPase expression in L6 muscle cells. Role of thyroid hormone.
    Author: Muller A, van Hardeveld C, Simonides WS, van Rijn J.
    Journal: Biochem J; 1992 May 01; 283 ( Pt 3)(Pt 3):713-8. PubMed ID: 1534220.
    Abstract:
    The effect of thyroid hormone (L-tri-iodothyronine; T3) on the cytosolic free Ca2+ concentration ([Ca2+]i) in L6 myotubes was studied at rest and during activation to explore the possible mediating role of [Ca2+]i in the T3-induced net synthesis of fast-type sarcoplasmic reticulum (SR) Ca(2+)-ATPase. The mean [Ca2+]i at rest was approx. 115 nM in myoblasts, control myotubes and T3-treated myotubes. Therefore it is unlikely that the T3-induced elevation of Ca(2+)-ATPase levels is mediated by [Ca2+]i changes. To investigate the influence of the 4-fold higher Ca(2+)-ATPase levels in T3-treated myotubes (compared with controls) on [Ca2+]i, interventions with caffeine (10 mM) and a high extracellular K+ concentration ([K+]o) (30 mM) were applied which initially mobilize Ca2+ predominantly from the SR. The results showed a lower (caffeine) or not significantly different (high [K+]o) increase in [Ca2+]i in T3-treated myotubes compared with controls. No rise in [Ca2+]i was found in myoblasts with caffeine or high [K+]o. The role of [Ca2+]i in the regulation of Ca(2+)-ATPase levels was investigated by varying [Ca2+]i through exposure of cells to different concentrations of extracellular Ca2+ (0.2-1.8 mM) and ionomycin (0.1-0.25 microM). At subnormal [Ca2+]i (55 nM) the T3-induced net synthesis of Ca(2+)-ATPase was virtually abolished, and at supranormal [Ca2+]i (195 nM) it was greatly depressed. Intermediate stimulation of net Ca(2+)-ATPase synthesis was found at [Ca2+]i of 95 and 165 nM, with an optimum at approx. 125 nM. Similar but less pronounced effects were found for the basal Ca(2+)-ATPase levels. In contracting primary rat myotubes, Ca(2+)-ATPase levels were significantly lower than in tetrodotoxin-arrested myotubes. The same results were obtained in the presence of T3. Since the mean [Ca2+]i in contracting cells is higher than in resting cells, these data agree with those obtained in the L6 cells with ionomycin. A major conclusion of this study is the existence of a [Ca2+]i optimum, near resting levels, for the expression of the fast-type Ca(2+)-ATPase in the L6 muscle cell line.
    [Abstract] [Full Text] [Related] [New Search]