These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans. Author: Lans H, Rademakers S, Jansen G. Journal: Genetics; 2004 Aug; 167(4):1677-87. PubMed ID: 15342507. Abstract: The two pairs of sensory neurons of C. elegans, AWA and AWC, that mediate odorant attraction, express six Galpha-subunits, suggesting that olfaction is regulated by a complex signaling network. Here, we describe the cellular localization and functions of the six olfactory Galpha-subunits: GPA-2, GPA-3, GPA-5, GPA-6, GPA-13, and ODR-3. All except GPA-6 localize to sensory cilia, suggesting a direct role in sensory transduction. GPA-2, GPA-3, GPA-5, and GPA-6 are also present in cell bodies and axons and GPA-5 specifically localizes to synaptic sites. Analysis of animals with single- to sixfold loss-of-function mutations shows that olfaction involves a balance between multiple stimulatory and inhibitory signals. ODR-3 constitutes the main stimulatory signal and is sufficient for the detection of odorants. GPA-3 forms a second stimulatory signal in the AWA and AWC neurons, also sufficient for odorant detection. In AWA, signaling is suppressed by GPA-5. In AWC, GPA-2 and GPA-13 negatively and positively regulate signaling, respectively. Finally, we show that only ODR-3 plays a role in cilia morphogenesis. Defects in this process are, however, independent of olfactory behavior. Our findings reveal the existence of a complex signaling network that controls odorant detection by C. elegans.[Abstract] [Full Text] [Related] [New Search]