These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impact of combined NO and PG blockade on rapid vasodilation in a forearm mild-to-moderate exercise transition in humans. Author: Saunders NR, Dinenno FA, Pyke KE, Rogers AM, Tschakovsky ME. Journal: Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H214-20. PubMed ID: 15345484. Abstract: We tested the hypothesis that nitric oxide (NO) and prostaglandins (PGs) contribute to the rapid vasodilation that accompanies a transition from mild to moderate exercise. Nine healthy volunteers (2 women and 7 men) lay supine with forearm at heart level. Subjects were instrumented for continuous brachial artery infusion of saline (control condition) or combined infusion of N(G)-nitro-L-arginine methyl ester (L-NAME) and ketorolac (drug condition) to inhibit NO synthase and cyclooxygenase, respectively. A step increase from 5 min of steady-state mild (5.4 kg) rhythmic, dynamic forearm handgrip exercise (1 s of contraction followed by 2 s of relaxation) to moderate (10.9 kg) exercise for 30 s was performed. Steady-state forearm blood flow (FBF; Doppler ultrasound) and forearm vascular conductance (FVC) were attenuated in drug compared with saline (control) treatment: FBF = 196.8 +/- 30.8 vs. 281.4 +/- 34.3 ml/min and FVC = 179.3 +/- 29.4 vs. 277.8 +/- 34.8 ml.min(-1).100 mmHg(-1) (both P < 0.01). FBF and FVC increased from steady state after release of the initial contraction at the higher workload in saline and drug conditions: DeltaFBF = 72.4 +/- 8.7 and 52.9 +/- 7.8 ml/min, respectively, and DeltaFVC = 66.3 +/- 7.3 and 44.1 +/- 7.0 ml.min(-1).100 mmHg(-1), respectively (all P < 0.05). The percent DeltaFBF and DeltaFVC were not different during saline infusion or combined inhibition of NO and PGs: DeltaFBF = 27.2 +/- 3.1 and 28.1 +/- 3.8%, respectively (P = 0.78) and DeltaFVC = 25.7 +/- 3.2 and 26.0 +/- 4.0%, respectively (P = 0.94). The data suggest that NO and vasodilatory PGs are not obligatory for rapid vasodilation at the onset of a step increase from mild- to moderate-intensity forearm exercise. Additional vasodilatory mechanisms not dependent on NO and PG release contribute to the immediate and early increase in blood flow in an exercise-to-exercise transition.[Abstract] [Full Text] [Related] [New Search]