These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Application of 5-azido-UDP-glucose and 5-azido-UDP-glucuronic acid photoaffinity probes for the determination of the active site orientation of microsomal UDP-glucosyltransferases and UDP-glucuronosyltransferases.
    Author: Drake RR, Igari Y, Lester R, Elbein AD, Radominska A.
    Journal: J Biol Chem; 1992 Jun 05; 267(16):11360-5. PubMed ID: 1534561.
    Abstract:
    A new approach to determining the active site orientation of microsomal glycosyltransferases is presented which utilizes the photoaffinity analogs [32P]5-Azido-UDP-glucose ([32P]5N3UDP-Glc) and [32P]5-Azido-UDP-glucuronic acid ([32P]5N3UDP-GlcA). It was previously shown that both photoprobes could be used to photolabel UDP-glucose:dolichol phosphate glucosyltransferase (Glc-P-Dol synthase), as well as the family of UDP-glucuronosyltransferases in rat liver microsomes. The effects of detergents, proteases, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) on the photolabeling of these enzymes were examined in intact rat liver microsomes. Photolabeling of Glc-P-Dol synthase by either photoprobe was the same in intact or disrupted vesicles, was susceptible to trypsin digestion, and was inhibited by the nonpenetrating inhibitor DIDS. Photolabeling of the UDP-glucuronosyltransferases by [32P]5N3UDP-GlcA was stimulated 1.3-fold in disrupted vesicles as compared to intact vesicles, whereas photolabeling of these enzymes by [32P]5N3UDP-Glc showed a 14-fold increase when vesicles were disrupted. Photolabeled UDP-glucuronosyltransferases were only susceptible to trypsin digestion in disrupted vesicles, and this was further verified by Western blot analyses. The results indicate a cytoplasmic orientation for access of UDP-sugars to Glc-P-Dol synthase and a lumenal orientation of most UDP-glucuronosyltransferases.
    [Abstract] [Full Text] [Related] [New Search]