These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Estrogen receptor (ER)-mediated transcriptional regulation of the human corticotropin-releasing hormone-binding protein promoter: differential effects of ERalpha and ERbeta. Author: van de Stolpe A, Slycke AJ, Reinders MO, Zomer AW, Goodenough S, Behl C, Seasholtz AF, van der Saag PT. Journal: Mol Endocrinol; 2004 Dec; 18(12):2908-23. PubMed ID: 15345745. Abstract: CRH-binding protein (CRH-BP) regulates activation of the hypothalamic-pituitary-adrenal (HPA) axis by binding and inhibiting CRH. We investigated for the first time transcriptional regulation of the human CRH-BP promoter using transient transfections. Estrogen receptors (ERs) contributed to ligand-independent constitutive activation of the promoter, whereas in the presence of estradiol ERalpha induced and ERbeta repressed promoter activity in a dose-dependent manner. TNFalpha inhibited promoter induction by ERalpha in the absence and presence of estradiol. Three ERE half-sites in the CRH-BP promoter bound ERalpha and ERbeta in an EMSA, and disruption of ERE half-sites by site-directed mutagenesis abolished ligand-independent induction by ERalpha and ERbeta and promoter enhancement by estradiol-activated ERalpha. Repression by estradiol/ERbeta was unaffected by disruption of ERE half-sites, activating protein 1, cAMP response element, GATA, or nuclear factor kappaB sites, and reversed to promoter induction by estrogen antagonists, tamoxifen and ICI 182,780, suggesting corepressor involvement. In hypothalamic GT1-7 cells, Western blotting demonstrated rapid induction of endogenous CRH-BP expression by estradiol-bound ER, which was inhibited by TNFalpha. We propose a model in which ERs maintain basal CRH-BP expression in pituitary and neurosecretory cells, whereas in the presence of ERalpha estrogen enhances CRH-BP transcription, causing down-regulation of the HPA axis, and nuclear factor kappaB-activating cytokines activate the HPA axis by inhibiting ERalpha.[Abstract] [Full Text] [Related] [New Search]