These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transureteral saline perfusion to obtain renal hypothermia: potential application in laparoscopic partial nephrectomy.
    Author: Crain DS, Spencer CR, Favata MA, Amling CL.
    Journal: JSLS; 2004; 8(3):217-22. PubMed ID: 15347107.
    Abstract:
    BACKGROUND: Partial nephrectomy for resection of renal tumors often requires renal artery clamping and external renal cooling using ice-slush. Laparoscopic surgery precludes traditional ice-slush cooling. To facilitate renal cooling during laparoscopic partial nephrectomy, we investigated a method of intrarenal cooling by retrograde transureteral iced saline perfusion. METHODS: Open laparotomy was performed in 6 pigs. After atraumatic renal artery clamping, one kidney was cooled externally by using standard ice-slush; the other was cooled transureterally. For transureteral cooling, the ureter was cannulated with a double lumen 12 Fr catheter. Chilled saline (4 degrees C) irrigation was flushed through the catheter into the renal pelvis (16.7 mL/min) and allowed to drain via the second lumen of the catheter. Using a 30-gauge hypodermic thermometer, kidney temperatures were measured at 5-minute intervals for 30 minutes at 3 locations and 2 depths (0.5 cm and 1.5 cm). The animals were euthanized, and the kidneys were harvested for histologic examination. RESULTS: Renal cooling was achieved with both external and transureteral cooling. However, lower (5.0 versus 26.1 degrees C, P<0.001) parenchymal temperatures were achieved more rapidly with external renal cooling. During transureteral cooling, medullary (1.5 cm) temperatures were lower than cortical (0.5 cm) temperatures were; this difference did not reach statistical significance. CONCLUSIONS: Although renal hypothermia can be achieved by transureteral iced saline infusion, external cooling by using ice-slush appears to be more efficient in the porcine model. With refinement of the technique, intrarenal cooling via a transureteral approach may allow more effective cooling of the renal medulla, and limit warm ischemia during laparoscopic partial nephrectomy.
    [Abstract] [Full Text] [Related] [New Search]