These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Age differences in knee extension power, contractile velocity, and fatigability. Author: Petrella JK, Kim JS, Tuggle SC, Hall SR, Bamman MM. Journal: J Appl Physiol (1985); 2005 Jan; 98(1):211-20. PubMed ID: 15347625. Abstract: The purposes of this study were to examine age and gender differences in knee extensor strength, power, and fatigue using open- and closed-chain testing procedures. We tested the hypothesis that specific strength (strength/unit muscle mass) would not differ by age, whereas age differences in specific power and fatigue would remain consequent to blunted maximal contractile velocity. Skeletal muscle performance was examined in 28 young (26.9 +/- 0.7 yr) and 24 older (63.6 +/- 0.8 yr) men and women. Assessments included one-repetition maximum strength for knee extension, leg press, and squat; concentric knee extensor peak power, velocity, and fatigability; and sit-to-stand power, fatigability, and relative neural activation (electromyograph activity during sit-to-stand movement normalized to electromyograph activity during isometric maximum voluntary contraction). Thigh lean mass (TLM; kg) was assessed by dual-energy X-ray absorptiometry. Specific strength (N/kg TLM) and specific power (W/kg TLM) were estimated by dividing absolute values by TLM. Age differences in specific strength were observed for knee extension only (young, 41.2 +/- 1.0 N/kg TLM; older, 32.4 +/- 1.0 N/kg TLM; P < 0.05). Adjustment for TLM did not negate age differences in knee extension specific power (25-41% lower in older; P < 0.05) across loads tested. Older adults experienced fatigue across 10 repetitions of knee extension as peak velocity fell by 24% (P < 0.05). Deficits in concentric power persist after adjustment for TLM as maximum contractile velocity falls markedly with aging. Older adults are less capable of sustaining maximum concentric velocity during repetitive contractions. These findings suggest that velocity impairments are a possible contributor to mobility loss and falls risk among older adults. Interventions for improving contractile velocity should be pursued.[Abstract] [Full Text] [Related] [New Search]