These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential activation of vascular genes by hypoxia in primary endothelial cells. Author: Nilsson I, Shibuya M, Wennström S. Journal: Exp Cell Res; 2004 Oct 01; 299(2):476-85. PubMed ID: 15350545. Abstract: Changes in the local environment, such as reduced oxygen tension (hypoxia), elicit transcriptional activation of a variety of genes in mammalian cells. Here we have analyzed the effect of hypoxia in different vascular endothelial cells (ECs) with emphasis on hypoxia-regulated transcription factors and genes of importance for blood vessel dynamics. While hypoxia induced the transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) in all endothelial cells tested, the closely related HIF-2alpha protein was markedly induced in microvascular/capillary endothelial cells, but only weakly or not at all in artery and vein endothelial cells. Furthermore, microvascular/capillary endothelial cells responded to hypoxia with increased number of transcripts encoding vascular endothelial growth factor-A (VEGF-A), VEGF receptor-2, the angiopoietin receptor Tie2, platelet-derived growth factor-B (PDGF-B), and inducible nitric oxide synthase (iNOS). In vein endothelial cells, hypoxia instead increased transcripts encoding lymphatic vascular components VEGF-C, -D, and VEGF receptor-3. Finally, reduced VEGF receptor levels and phosphorylation indicated establishment of a functional autocrine VEGF-A loop in hypoxic endothelial cells. Our results show that endothelial cells, derived from different vascular beds, mount different transcriptional responses to changes in oxygen tension.[Abstract] [Full Text] [Related] [New Search]