These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of neonatal excitotoxic lesions of the entorhinal cortex on cognitive functions in the adult rat. Author: Schmadel S, Schwabe K, Koch M. Journal: Neuroscience; 2004; 128(2):365-74. PubMed ID: 15350648. Abstract: The entorhinal cortex (EC) is involved in a variety of cognitive functions by virtue of its neuronal input from the neocortex and projection to the hippocampal formation and the limbic-striatal system. Neonatal lesions are increasingly considered useful models for disconnection syndromes such as schizophrenia. Therefore, we investigated the effects of neonatal EC lesions on adult rat behavior. Neonatal (postnatal day 7) lesions were inflicted by bilateral injections of ibotenate into the EC. Sham-lesioned (vehicle injection) and naive (unoperated) rats served as controls. Locomotor activity was measured in prepubertal and young adult rats. Adult rats were then tested for spatial learning in an eight-arm radial maze (reinforced delayed alternation) and for motivation (progressive ratio schedule of operant behavior). Finally, prepulse inhibition (PPI) of the acoustic startle reflex and locomotor activity were investigated with and without apomorphine (APO) challenge. Brain tissue damage was assessed using Nissl-staining. The total volume of the adult rat EC was reduced after neonatal ibotenate-injection. Neonatal EC-lesions increased perseveration only in a delayed task in the radial maze and induced a leftward-shift of breakpoints in operant responding. Lesions did not alter baseline locomotor activity, but enhanced the locomotor stimulating effect of APO. PPI was not affected by neonatal lesions of the EC with and without APO challenge. Neonatal lesions of the EC impaired the ability to hold information during delays and reduced motivation during operant behavior which reflects a state of anhedonia. Thus, they may serve as an animal model for certain aspects of schizophrenia.[Abstract] [Full Text] [Related] [New Search]