These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Developmental changes of GABAergic synapses formed between primary cultured cortical neurons. Author: Kato-Negishi M, Muramoto K, Kawahara M, Kuroda Y, Ichikawa M. Journal: Brain Res Dev Brain Res; 2004 Sep 17; 152(2):99-108. PubMed ID: 15351497. Abstract: The characteristics of functional changes of GABAergic synapses between cultured rat cortical neurons were observed by monitoring intracellular calcium level ([Ca2+]in) during development in vitro. After 5 days in vitro (DIV), cultured cortical neurons spontaneously exhibited synchronous oscillatory changes in [Ca2+]in, which were derived from synaptic activity. Exposure to bicuculline, antagonist of gamma-aminobutyric acid (GABA)(A) receptors, caused a marked decrease in the frequency of [Ca2+]in oscillations at 7-20 DIV. Although the frequency of spontaneous oscillations increased during this culture period, the ratio of the decrease in the frequency following bicuculline treatment did not significantly change. Thereafter, to investigate the detailed morphological changes of GABAergic synapses during development in vitro, the cultured neurons were immunostained with antibodies to glutamic acid decarboxylase (GAD), synaptophysin and GABA(A) receptor and were observed under a confocal laser microscope. Most of the GAD-positive puncta colocalized with synaptophysin-positive puncta and were opposed to GABA(A) receptor-positive structures. The images of GAD-positive puncta were reconstructed from the confocal three-dimensional data to analyze their number, volume, and surface area. The number of these puncta increased with culture time at 7-20 DIV. Although the volume of individual GAD-positive puncta did not significantly change, the surface area decreased in a time-dependent manner over the culture period. This system that we developed enabled us to investigate in detail the morphological and functional changes of GABAergic synapses during neuronal development.[Abstract] [Full Text] [Related] [New Search]