These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fate and metabolism of [15N]2,4,6-trinitrotoluene in soil. Author: Weiss M, Geyer R, Russow R, Richnow HH, Kästner M. Journal: Environ Toxicol Chem; 2004 Aug; 23(8):1852-60. PubMed ID: 15352472. Abstract: The fates of the labels from [14C] and [15N] trinitrotoluene were analyzed in bioreactors under aerobic conditions in soil treated by a fungal bioremediation process with Stropharia rugosoannulata and in control soil. Up to 17.5% of the 15N label had a different fate than the 14C label. Three N-mineralization processes were identified in detailed experiments with [15N]TNT. About 2% of the 15N label was found as NO3- and NH4+, showing simultaneous processes of direct TNT denitration (I) and reduction with cleavage of the amino groups (II). The enrichment of NO2-/NO3- (up to 7.5 atom% 15N abundance) indicates the formation of Meisenheimer complexes with a denitration of [15N]TNT. A 1.4% of the label was found distributed between N2O and N2. However, the 15N enrichment of the N2O (up to 38 atom%) demonstrated that both N atoms were generated from the labeled TNT and clearly indicates a novel formation process (III). We propose, as an explanation, the generation of N2O by cleavage from condensed azoxy metabolites. In addition, 1.7% of the 15N label was detected as biogenic amino acids in the wheat straw containing the fungus. Overall, 60 to 85% of the applied [15N]TNT was degraded and 52 to 64% was found as nonextractable residues in the soil matrix. Three percent was detected as 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene.[Abstract] [Full Text] [Related] [New Search]