These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reverse methanogenesis: testing the hypothesis with environmental genomics.
    Author: Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF.
    Journal: Science; 2004 Sep 03; 305(5689):1457-62. PubMed ID: 15353801.
    Abstract:
    Microbial methane consumption in anoxic sediments significantly impacts the global environment by reducing the flux of greenhouse gases from ocean to atmosphere. Despite its significance, the biological mechanisms controlling anaerobic methane oxidation are not well characterized. One current model suggests that relatives of methane-producing Archaea developed the capacity to reverse methanogenesis and thereby to consume methane to produce cellular carbon and energy. We report here a test of the "reverse-methanogenesis" hypothesis by genomic analyses of methane-oxidizing Archaea from deep-sea sediments. Our results show that nearly all genes typically associated with methane production are present in one specific group of archaeal methanotrophs. These genome-based observations support previous hypotheses and provide an informed foundation for metabolic modeling of anaerobic methane oxidation.
    [Abstract] [Full Text] [Related] [New Search]