These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A paradigm shift in the construction of heterobimetallic complexes: synthesis of group 2 & 4 metal-calix[6]arene complexes.
    Author: Petrella AJ, Craig DC, Lamb RN, Raston CL, Roberts NK.
    Journal: Dalton Trans; 2004 Jan 21; (2):327-33. PubMed ID: 15356731.
    Abstract:
    Deprotonation of calix[6]arenes with barium in methanol followed by the addition of [Ti(OPr(i))(4)] or [Zr(OBu(n))(4)] is effective in the formation of novel dimeric 2:1 barium-titanium(IV)/zirconium(IV) calix[6]arene complexes. In these complexes a central Ti(IV)/Zr(IV) coordinated in the exo-position connects the two calix[6]arenes in the 1,3-alternate conformation, each with an endo-barium sharing common phenolate groups with the titanium/zirconium centre and participating in cation-pi interactions. A homometallic barium calix[6]arene dimer was also prepared wherein the calix[6]arenes are in the 1,3-alternate conformation with each coordinating one endo- and one exo-barium centre. The exo-barium cations connect the two calix[6]arenes through bridging methanol ligands. In this and the heterometallic complexes, cation-pi complexation of the Ba(2+) ion within the 1,3 alternate conformation of calix[6]arene facilitates the formation of the dimeric complexes in methanol. In contrast, the smaller Sr(2+) ion did not form similar complexes in methanol, and the formation of an analogous 2:1 strontium-titanium calixarene complex required the use of the more sterically demanding donor alcohol, isopropanol, the resulting complex being devoid of cation-pi interaction. The results show (i) that a subtle interplay of solvation strength, coordination array type and cavity/cation size influences the accessibility of heterobimetallic complexes based on calix[6]arenes, and (ii) a synergistic endo-exo binding behaviour.
    [Abstract] [Full Text] [Related] [New Search]