These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidation of 3,4-dehydro-D-proline and other D-amino acid analogues by D-alanine dehydrogenase from Escherichia coli.
    Author: Deutch CE.
    Journal: FEMS Microbiol Lett; 2004 Sep 15; 238(2):383-9. PubMed ID: 15358424.
    Abstract:
    3,4-Dehydro-DL-proline is a toxic analogue of L-proline which has been useful in studying the uptake and metabolism of this key amino acid. When membrane fractions from Escherichia coli strain UMM5 (putA1::Tn5 proC24) lacking both L-proline dehydrogenase and L-Delta(1)-pyrroline-5-carboxylate reductase were incubated with 3,4-dehydro-DL-proline, pyrrole-2-carboxylate was formed. There was no enzyme activity with 3,4-dehydro-L-proline, but activity was restored after racemization of the substrate. Oxidation of 3,4-dehydro-DL-proline by membrane fractions from strain UMM5 was induced by growth in minimal medium containing D- or L-alanine, had a pH optimum of 9, and was competitively inhibited by D-alanine. An E. coli strain with no D-alanine dehydrogenase activity due to the dadA237 mutation was unable to oxidize either 3,4-dehydro-D-proline or D-alanine, as were spontaneous Dad(-) mutants of E. coli strain UMM5. Membrane fractions containing D-alanine dehydrogenase also catalyzed the oxidation of D-2-aminobutyrate, D-norvaline, D-norleucine, cis-4-hydroxy-D-proline, and DL-ethionine. These results indicate that d-alanine dehydrogenase is responsible for the residual 3,4-dehydro-DL-proline oxidation activity in putA proC mutants of E. coli and provide further evidence that this enzyme plays a general role in the metabolism of D-amino acids and their analogues.
    [Abstract] [Full Text] [Related] [New Search]