These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Author: Lindstedt KA, Kovanen PT. Journal: Curr Opin Lipidol; 2004 Oct; 15(5):567-73. PubMed ID: 15361793. Abstract: PURPOSE OF REVIEW: A novel link between inflammation and acute coronary syndromes is emerging, in that infiltrating inflammatory cells may convert a clinically silent coronary plaque into a dangerous and potentially lethal plaque. The majority of acute atherothrombotic events now relate to erosion or rupture of such unstable plaques. Here we summarize the molecular mechanisms by which activated mast cells may contribute to plaque erosion or rupture. RECENT FINDINGS: In-vitro experiments have revealed a multitude of paracrine effects exerted by activated mast cells. By secreting heparin proteoglycans and chymase, activated mast cells efficiently inhibit the proliferation of smooth muscle cells in vitro, and reduce their ability to produce collagen by a transforming growth factor beta-dependent and -independent mechanism. Mast cell chymase and tryptase are capable of activating matrix metalloproteinases types 1 and 3, causing degradation of the extracellular matrix component, collagen, necessary for the stability of the plaque. Activated mast cells also secrete matrix metalloproteinases types 1 and 9 themselves. Furthermore, chymase induces SMC apoptosis by degrading fibronectin, a pericellular matrix component necessary for SMC adhesion and survival, with the subsequent disruption of focal adhesions and loss of outside-in survival signaling. By secreting chymase and tumour necrosis factor alpha, activated mast cells also induce endothelial cell apoptosis. SUMMARY: Locally activated mast cells may participate in the weakening of atherosclerotic plaques by secreting heparin proteoglycans, chymase, and cytokines, which affect the growth, function and death of arterial endothelial cells and smooth muscle cells, thereby predisposing to plaque erosion or rupture.[Abstract] [Full Text] [Related] [New Search]