These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Organelle nuclei in higher plants: structure, composition, function, and evolution. Author: Sakai A, Takano H, Kuroiwa T. Journal: Int Rev Cytol; 2004; 238():59-118. PubMed ID: 15364197. Abstract: Plant cells have two distinct types of energy-converting organelles: plastids and mitochondria. These organelles have their own DNAs and are regarded as descendants of endosymbiotic prokaryotes. The organelle DNAs associate with various proteins to form compact DNA-protein complexes, which are referred to as organelle nuclei or nucleoids. Various functions of organelle genomes, such as DNA replication and transcription, are performed within these compact structures. Fluorescence microscopy using the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole has played a pivotal role in establishing the concept of "organelle nuclei." This fluorochrome has also facilitated the isolation of morphologically intact organelle nuclei, which is indispensable for understanding their structure and composition. Moreover, development of an in vitro transcription?DNA synthesis system using isolated organelle nuclei has provided us with a means of measuring and analyzing the function of organelle nuclei. In addition to these morphological and biochemical approaches, genomics has also had a great impact on our ability to investigate the components of organelle nuclei. These analyses have revealed that organelle nuclei are not a vestige of the bacterial counterpart, but rather are a complex system established through extensive interaction between organelle and cell nuclear genomes during evolution. Extensive diversion or exchange during evolution is predicted to have occurred for several important structural proteins, such as major DNA-compacting proteins, and functional proteins, such as RNA and DNA polymerases, resulting in complex mechanisms to control the function of organelle genomes. Thus, organelle nuclei represent the most dynamic front of interaction between the three genomes (cell nuclear, plastid, and mitochondrial) constituting eukaryotic plant cells.[Abstract] [Full Text] [Related] [New Search]