These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reconstituted membranes of tumour cells (proteoliposomes) induce specific protection to murine lymphoma cells. Author: Bergers JJ, Den Otter W, De Groot JW, De Blois AW, Dullens HF, Steerenberg PA, Crommelin DJ. Journal: Cancer Immunol Immunother; 1992; 34(4):233-40. PubMed ID: 1537056. Abstract: Antigens presented on cell membranes or on liposomes are usually more immunogenic than antigens in soluble form, this being one of the reasons for the weak immunogenicity of extracted tumour-associated transplantation antigens (TATA). The main objective of this study is to solubilize TATA from tumour cells and to present them on a membrane-like structure to the immune system. Crude tumour cell membranes of SL2 lymphosarcoma cells (a spontaneously arising, weakly immunogenic tumour) were solubilized with octylglucoside or sodium deoxycholate, and reconstituted membranes (proteoliposomes) were prepared by detergent removal. Mice immunized s.c. with reconstituted membranes were protected against an i.p. challenge with tumour cells. Although octylglucoside solubilized only 41% of the membrane proteins, the reconstituted membranes were as immunoprotective as crude membranes. (Glyco)proteins were probably the major membrane components in the reconstituted membranes that induce immunoprotection, as mice immunized with preparations constituted of (glyco)lipids from SL2 cells could not reject SL2 cells. If Freund's complete adjuvant was used with the first immunization injection, no potentiation of the elicited immune responses was observed. Besides the membrane TATA, SL2 cells contained an apparently non-membrane-bound TATA, which was found in the cytoplasm. It is concluded that detergent solubilization of membranes and subsequent preparation of reconstituted membranes can be used to obtain membrane tumour-associated antigens that retain activity for induction of protective tumour immunity. The major advantage of this method is that membrane proteins are solubilized and are subsequently presented on a membrane-like structure that resembles the tumour cell membrane. On theoretical and practical grounds it provides a promising alternative for whole-cell vaccines.[Abstract] [Full Text] [Related] [New Search]