These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular design of an acid-base cooperative catalyst for RNA cleavage based on a dizinc complex.
    Author: Yashiro M, Kawahara R.
    Journal: J Biol Inorg Chem; 2004 Oct; 9(7):914-21. PubMed ID: 15372324.
    Abstract:
    The effects of donor groups of dizinc complexes, formed from a 2:1 mixture of Zn(II) and a dinucleating ligand, on adenylyl(3'-5')adenosine (ApA) cleavage have been studied. Two dinucleating ligands were used: one had two 2-pyridylmethyl and two 2-hydroxyethyl moieties on the 1,3-diamino-2-propanol linker moiety (2), and the other had two 2-pyridylmethyl and two carboxymethyl moieties on the 1,3-diamino-2-propanol linker moiety (3(2-)). The dizinc complex with2 [(Zn(2+))(2)-2] showed higher activities toward ApA cleavage than the dizinc complex using an analogous dinucleating ligand having four 2-pyridylmethyl donor moieties [(Zn(2+))(2)-1] at pH 5-8. The former showed a bell-shaped pH-rate constant profile, whereas the latter showed a sigmoidal pattern. The differences in the pH-rate constant profile are attributable to the various distributions of the monohydroxo-dizinc species, i.e. dideprotonated species, which are responsible for ApA cleavage. The monohydroxo species of (Zn(2+))(2)-2 has two acidic protons, which are not present in the corresponding monohydroxo species of (Zn(2+))(2)-1. The existence of both intracomplex acid (ROH or H(2)O) and base catalysts (RO(-) or OH(-)) in (Zn(2+))(2)-2 can explain its higher activity toward ApA cleavage than that of (Zn(2+))(2)-1. In contrast, (Zn(2+))(2)-3(2-) showed lower activity toward ApA cleavage at pH 7.0, which can be ascribed to the absence of the monohydroxo-dizinc species under these conditions.
    [Abstract] [Full Text] [Related] [New Search]