These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: T cell receptor activation of a ribosomal S6 kinase activity. Author: Calvo V, Bierer BE, Vik TA. Journal: Eur J Immunol; 1992 Feb; 22(2):457-62. PubMed ID: 1537381. Abstract: Stimulation of the T cell receptor-CD3 complex activates multiple signal transduction pathways, including serine/threonine and tyrosine protein kinases. Stimulation of the human T cell line Jurkat via the T cell receptor-CD3 complex with anti-CD3 monoclonal antibody or incubation with the tumor promoter phorbol 12-myristate 13-acetate caused increases in S6 kinase and microtubule-associated protein 2 (MAP) kinase activities. An S6 kinase activity that was able to phosphorylate exogenous 40S ribosomal S6 protein was recovered in immunoprecipitates obtained using a 90-kDa ribosomal S6 kinase-specific antiserum and thus represents activation of a member of the 90-kDa ribosomal S6 kinase family. Stimulation of the S6 kinase activity correlated with an increase in a kinase activity able to phosphorylate exogenous 90-kDa ribosomal S6 kinase (rsk) attributed to a MAP kinase activity. These increases in S6 and MAP kinase activities further correlated with the appearance of a 42-kDa phosphoprotein detected by anti-phosphotyrosine immunoblotting. However, while the tyrosine phosphorylation of the 42-kDa protein and the MAP kinase activity are dependent on protein kinase C activity, residual S6 kinase activity can be detected following protein kinase C depletion and subsequent anti-CD3 stimulation. Thus, T cell activation through the T cell receptor-CD3 complex results in activation of a member of the 90-kDa S6 kinase family which correlates with, but can be independent of, MAP kinase activation.[Abstract] [Full Text] [Related] [New Search]