These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria.
    Author: Kim J, Hetzel M, Boiangiu CD, Buckel W.
    Journal: FEMS Microbiol Rev; 2004 Oct; 28(4):455-68. PubMed ID: 15374661.
    Abstract:
    Several clostridia and fusobacteria ferment alpha-amino acids via (R)-2-hydroxyacyl-CoA, which is dehydrated to enoyl-CoA by syn-elimination. This reaction is of great mechanistic interest, since the beta-hydrogen, to be eliminated as proton, is not activated (pK 40-50). A mechanism has been proposed, in which one high-energy electron acts as cofactor and transiently reduces the electrophilic thiol ester carbonyl to a nucleophilic ketyl radical anion. The 2-hydroxyacyl-CoA dehydratases are two-component systems composed of an extremely oxygen-sensitive component A, an activator, and component D, the actual dehydratase. Component A, a homodimer with one [4Fe-4S]cluster, transfers an electron to component D, a heterodimer with 1-2 [4Fe-4S]clusters and FMN, concomitant with hydrolysis of two ATP. From component D the electron is further transferred to the substrate, where it facilitates elimination of the hydroxyl group. In the resulting enoxyradical the beta-hydrogen is activated (pK14). After elimination the electron is handed-over to the next incoming substrate without further hydrolysis of ATP. The helix-cluster-helix architecture of component A forms an angle of 105 degrees, which probably opens to 180 degrees upon binding of ATP resembling an archer shooting arrows. Therefore we designated component A as 'Archerase'. Here, we describe 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans, Clostridium symbiosum and Fusobacterium nucleatum, 2-phenyllactate dehydratase from Clostridium sporogenes, 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile, and lactyl-CoA dehydratase from Clostridium propionicum. A relative of the 2-hydroxyacyl-CoA dehydratases is benzoyl-CoA reductase from Thauera aromatica. Analogous but unrelated archerases are the iron proteins of nitrogenase and bacterial protochlorophyllide reductase. In anaerobic organisms, which do not oxidize 2-oxo acids, a second energy-driven electron transfer from NADH to ferredoxin, the electron donor of component A, has been established. The transfer is catalysed by a membrane-bound NADH-ferredoxin oxidoreductase driven by an electrochemical Na(+)-gradient. This enzyme is related to the Rnf proteins involved in Rhodobacter capsulatus nitrogen fixation.
    [Abstract] [Full Text] [Related] [New Search]