These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transcriptional regulation of signal regulatory protein alpha1 inhibitory receptors by epidermal growth factor receptor signaling.
    Author: Kapoor GS, Kapitonov D, O'Rourke DM.
    Journal: Cancer Res; 2004 Sep 15; 64(18):6444-52. PubMed ID: 15374953.
    Abstract:
    Signal regulatory protein (SIRP) alpha1 is a membrane glycoprotein and a member of the SIRP receptor family. These transmembrane receptors have been shown to exert negative effects on signal transduction by receptor tyrosine kinases via immunoreceptor tyrosine-based inhibitory motifs in the carboxyl domain. Previous work has demonstrated that SIRPs negatively regulate many signaling pathways leading to reduction in tumor migration, survival, and cell transformation. Thus, modulation of SIRP expression levels or activity could be of great significance in the field of cancer therapy. The aim of the present study was to determine the factors that regulate levels of SIRPalpha1 in human glioblastoma cells that frequently overexpress the epidermal growth factor receptor (EGFR) because SIRPs have been shown to negatively regulate EGFR signaling. Northern blot analysis and immunoprecipitation assays showed variable expression levels of endogenous SIRPalpha transcripts in nine well-characterized glioblastoma cell lines. We examined SIRPalpha1 regulation in U87MG and U373MG cells in comparison with clonal derivatives that express a truncated form of erbB2, which negatively regulates EGFR signaling by inducing the formation of nonfunctional heterodimeric complexes. Mutant erbB2-expressing cells contained more SIRPalpha1 mRNA when compared with the parental cells in presence or absence of serum. Similarly, immunoprecipitation assays showed increased SIRPalpha1 protein levels in erbB-inhibited cells when compared with parental cells. Messenger RNA stability assays revealed that the increased mRNA levels in EGFR-inhibited cells were due to an induction of transcription. Consistent with this finding, expression of the erbB2 mutant receptor up-regulated SIRPalpha1 promoter activity in all cell lines tested. Interestingly, pharmacological inhibition of the kinase activities of EGFR, erbB2, and src and activation of mitogen-activated protein kinase, but not phosphatidylinositol 3'-kinase, significantly up-regulated SIRPalpha1 promoter activity. Based on these observations, we hypothesize that down-modulation of EGFR signaling leads to transcriptional up-regulation of the inhibitory SIRPalpha1 gene. These data may be important in the application of erbB-inhibitory strategies and for design of therapies for the treatment of glial tumors and other epithelial malignancies.
    [Abstract] [Full Text] [Related] [New Search]