These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential effects of 5-HT1 and 5-HT2 receptor agonists on hindlimb movements in paraplegic mice.
    Author: Landry ES, Guertin PA.
    Journal: Prog Neuropsychopharmacol Biol Psychiatry; 2004 Sep; 28(6):1053-60. PubMed ID: 15380867.
    Abstract:
    The effects induced by serotonergic (5-HT) agonists of the 5-HT1 and 5-HT2 subclasses were examined on hindlimb movement generation in adult mice completely spinal cord transected at the low thoracic level. One week postspinalization, intraperitoneal injection (0.5-10 mg/kg) of meta-chlorophenylpiperazine (m-CPP; 5-HT(2B/2C) agonist) or trifluoromethylpiperazine (TFMPP; 5-HT(1B) agonist) failed to induce locomotor-like movements. However, dose-dependent nonlocomotor movements were induced in air-stepping condition or on a motor-driven treadmill. In contrast, hindlimb locomotor-like movements were found after the injection of quipazine (5-HT(2A/2C) agonist; 1-2 mg/kg). Combined with L-DOPA (50 mg/kg, i.p.), low doses of quipazine but not of m-CPP and TFMPP produced locomotor-like and nonlocomotor movements in air-stepping condition or on the treadmill. Subsequent administration of m-CPP or TFMPP significantly reduced and often completely abolished the hindlimb movements induced by quipazine and L-DOPA. Altogether, these results demonstrate that 5-HT(2A/2C) receptor agonists promote locomotion while 5-HT(1B) and 5-HT(2B/2C) receptor agonists interfere with locomotor genesis in the hindlimbs of complete paraplegic mice. These results suggest that only subsets of spinal 5-HT receptors are specific to locomotor rhythmogenesis and should be activated to successfully induce stepping movements after spinal cord injury.
    [Abstract] [Full Text] [Related] [New Search]