These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 5-hydroxytryptamine1A-like receptor activation in the bed nucleus of the stria terminalis: electrophysiological and behavioral studies. Author: Levita L, Hammack SE, Mania I, Li XY, Davis M, Rainnie DG. Journal: Neuroscience; 2004; 128(3):583-96. PubMed ID: 15381287. Abstract: The anteriorlateral bed nucleus of the stria terminalis (BNST AL) and the serotonergic system are believed to modulate behavioral responses to stressful and/or anxiogenic stimuli. However, although the BNST AL receives heavy serotonergic innervation, the functional significance of this input is not known. Data obtained from in vitro whole-cell patch clamp recording in the rat BNST slice show that exogenous application of 5-hydroxytryptamine (5-HT) evoked a heterogeneous response in BNST AL neurons. The principal action of 5-HT in this region was inhibitory, evoking a membrane hyperpolarization (5-HTHyp) and a concomitant reduction in input resistance in the majority of neurons tested. The broad-spectrum 5-HT1 agonist, 5-carboxamindotryptamine (5-CT), but not R(+/-)8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT), mimicked the 5-HTHyp response in the BNST. Moreover, the outward current mediating 5-HTHyp was inwardly rectifying and sensitive to the G protein activated inwardly rectifying K+ (G IRK) channel blocker, tertiapin-Q. In the CNS 5-HT1A receptors are thought to couple to GIRK channels, suggesting that 5-HTHyp in BNST AL neurons was mediated by activation of 5-HT1A-like receptors. This was confirmed by the blockade of both 5-HTHyp and 5-CTHyp by the specific 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate salt (WAY100635 200nM). Furthermore, an in vivo examination of the functional consequences of 5-HT1A-like induced inhibition of BNST neurons revealed that infusion of 5-CT into the BNST significantly reduced the acoustic startle response, without affecting the general motor activity of the animals. These data point to the possibility that 5-HT1A mediated inhibition of the BNST AL could contribute to an anxiolytic action. Hence, we propose that in response to stressful stimuli, enhanced levels of 5-HT in the BNST AL plays a critical homeostatic role in feedback inhibition of the anxiogenic response to these stimuli.[Abstract] [Full Text] [Related] [New Search]