These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NADPH oxidase produces reactive oxygen species and maintains survival of rat astrocytes. Author: Liu Q, Kang JH, Zheng RL. Journal: Cell Biochem Funct; 2005; 23(2):93-100. PubMed ID: 15386527. Abstract: Reactive oxygen species (ROS) produced by activated astrocytes have been considered to be involved in the pathogenesis of neurodegenerative diseases, while NADPH oxidase is an essential enzyme involved in ROS-mediated signal transduction. The goal of the present study was to determine whether NADPH oxidase plays a role in ROS generation and cell survival in rat astrocytes. We found that the release of ROS in rat astrocytes was significantly increased by stimulation with calcium ionophore or opsonized zymosan, which are known to trigger a respiration burst in phagocytes by the NADPH oxidase pathway. Further study indicated that diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, significantly suppressed the increase of ROS release caused by the calcium ionophore or opsonized zymosan. Cell survival assay and fluorescence double dyeing with acridine orange and ethidium bromide showed that DPI dose- and time-dependently decreased the viability of normal astrocytes, whereas exogenous supplementation of H2O2 can reverse the survival of DPI-treated astrocytes. For the first time, our results suggest that NADPH oxidase is an important enzyme for the generation of ROS in astrocytes, and the ROS generated by NADPH oxidase play an essential role in astrocyte survival.[Abstract] [Full Text] [Related] [New Search]