These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. Author: Marom R, Shur I, Solomon R, Benayahu D. Journal: J Cell Physiol; 2005 Jan; 202(1):41-8. PubMed ID: 15389528. Abstract: Marrow stroma cells (MSC) play a major role in osteogenesis. The potential of the MSC to differentiate to bone-forming cells relies upon molecular regulation. This study analyzed MBA-15 cells for the expression of genes and proteins that are key regulators of osteoblast differentiation. These cells express Cbfa1 and c-fos transcription factors (TF) of osteoprogenitor proliferating cells. RT-PCR and immunohistochemistry were used to demonstrate the message and protein expression of extracellular matrix proteins that are a prerequisite for matrix formation and mineralization, including alkaline phosphatase (ALP), osteocalcin, osteopontin, biglycan, and bone sialoprotein (BSP). The activity of ALP was correlated at various cell densities with co-expression of osteocalcin or osteopontin. Adhering cells must attach to the appropriate matrix to enable survival and differentiation. Using attachment assays, we demonstrated that MBA-15 cells adhered to collagenous matrix and the effect on survival measured by changes in intracellular calcium (Ca) levels. The cells' adhesion to matrix is mediated via cell surface molecules. We quantified the expression of cells surface molecules that are important players in mediating cell-matrix interaction. Flow cytometry analysis (FACS) was used to determine the expression of CD-31 (36%), and lower levels were identified for CD-62E and CD11b. In summary, the present study demonstrates the expression of molecular markers that are distinctive for the osteoblastic phenotype in MBA-15 marrow stroma cells and have crucial role in cell-matrix interaction, in establishing the cellular osteogenic phenotype and their survival.[Abstract] [Full Text] [Related] [New Search]