These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nature of 6-methylpurine inhibition and characterization of two 6-methylpurine-resistant mutants of Neurospora crassa. Author: Pendyala L, Smyth J, Wellman AM. Journal: J Bacteriol; 1979 Jan; 137(1):248-55. PubMed ID: 153898. Abstract: 6-Methylpurine, an analog of adenine, inhibits the growth of Neurospora crassa. From kinetic studies it was found that 6-methylpurine is converted to its nucleotide form by adenine phosphoribosyltransferase (EC 2.4.2.7), and inhibits the de novo purine biosynthesis. Adenine relieves the growth inhibition caused by 6-methylpurine, whereas hypoxanthine is not very effective. Studies dealing with hypoxanthine utilization in the presence of 6-methylpurine indicated a severely reduced uptake of hypoxanthine and a general slowdown in its further metabolism. Two mutants (Mepr-3 and Mepr-10) which are resistant to 6-methylpurine were characterized. Studies of purine base uptake and the in vivo and in vitro conversion to nucleotides indicated that Mepr-10 may be an adenine phosphoribosyltransferase-defective mutant, whereas Mepr-3 may be a mutant with altered feedback response to 6-methylpurine. Both mutants showed a severely lowered hypoxanthine phosphoribosyltransferase activity, but because 6-methylpurine did not have any effect on the conversion of hypoxanthine to IMP in the wild type, it was concluded that 6-methylpurine resistance in these mutants cannot be due to lowered hypoxanthine phosphoribosyltransferase activity, but rather that the lowering of enzyme activity may be a secondary effect.[Abstract] [Full Text] [Related] [New Search]