These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chemical protection and cell-cycle effects on radiation-induced mutagenesis.
    Author: Grdina DJ, Sigdestad CP.
    Journal: Cell Prolif; 1992 Jan; 25(1):23-9. PubMed ID: 1540681.
    Abstract:
    Chinese hamster ovary cells in the exponential phase of growth were harvested and separated by the method of centrifugal elutriation into subpopulations enriched with up to 95% G1 phase, 70% S phase and 65% G2 + M phase cells. Cell cycle distributions were routinely monitored by flow cytometry. Following elutriation, aliquots of cells from each of the enriched cell fractions were incubated in the presence or absence of 4 mM of 2-[(aminopropyl)amino] ethanethiol (WR-1065) for 30 min at 37 degrees C. The cells were then irradiated with 60Co gamma-rays or fission-spectrum neutrons from the JANUS research reactor. Both cell killing and mutagenesis were determined. Regardless of the radiation quality used, cells enriched in G1 phase were the most sensitive to radiation-induced mutagenesis at the hypoxanthine-guanine phosphoribosyl transferase locus. The relative magnitude of protection exerted by WR-1065 differed for each of the elutriator separated cell populations. The greatest magnitude of protection, however, was observed for G1-enriched populations, regardless of the radiation quality used or the biological end-point tested.
    [Abstract] [Full Text] [Related] [New Search]