These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of protein kinase C by ether-linked lipids is not correlated with their antineoplastic activity on WEHI-3B and R6X-B15 cells.
    Author: Salari H, Dryden P, Davenport R, Howard S, Jones K, Bittman R.
    Journal: Biochim Biophys Acta; 1992 Feb 19; 1134(1):81-8. PubMed ID: 1543759.
    Abstract:
    To test the hypothesis that the action of antineoplastic ether-linked lipids in leukemic cells is associated with their ability to inhibit protein kinase C (PKC), we have compared the effects of two ether-linked lipids, 1-O-hexadecyl-2-O-methyl-sn-glycero-3-phosphocholine (ET16-OCH3-GPC) and 1-O-hexadecyl-2-O-methyl-sn-glycero-3-(S-beta-D-1'- thioglucopyranosyl)-sn-glycerol (ET16-OCH3-beta-thio-Glc), on two different leukemic cell lines (WEHI-3B and R6X-B15). ET16-OCH3-GPC killed WEHI-3B cells with an EC50 value of 2.5 microM, whereas it was far less effective against R6X-B15 cells (EC50 = 40 microM). In contrast, the beta anomer of ET16-OCH3-beta-thio-Glc did not kill either cell line at concentrations up to 40 microM. Both ET16-OCH3-GPC and ET16-OCH3-thio-Glc inhibited 12-O-tetradecanoylphorbol 12,13-dibutyrate (TPA)-induced PKC translocation in both WEHI-3B and R6X-B15 cells. When WEHI-3B cells were first exposed to TPA, and then to ET16-OCH3-GPC, no significant decrease in PKC activity in the particulate fraction was noticed. When, however, the cells were first exposed to ET16-OCH3-GPC and then to TPA, the enzyme activity in the particulate fraction was decreased by 20-30%. A phorbol dibutyrate binding assay showed that the decrease in membrane-associated PKC activity and the increase in cytosolic PKC activity did not result from impeded enzyme translocation. These results suggest that the similar PKC inhibitory potency of ET16-OCH3-GPC and ET16-OCH3-beta-thio-Glc: (a) is not correlated with the widely different cytotoxicities of these agents and (b) is probably due to interference with the binding of diacylglycerol/phosphatidylserine or TPA to PKC. Taken together, these results suggest that the ether-linked lipids compete with diacylglycerol/phosphatidylserine or TPA for binding sites on PKC required for enzyme activation.
    [Abstract] [Full Text] [Related] [New Search]