These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differences in the effects of 5-HT(1A) receptor agonists on forced swimming behavior and brain 5-HT metabolism between low and high aggressive mice. Author: Veenema AH, Cremers TI, Jongsma ME, Steenbergen PJ, de Boer SF, Koolhaas JM. Journal: Psychopharmacology (Berl); 2005 Mar; 178(2-3):151-60. PubMed ID: 15448978. Abstract: RATIONALE: Male wild house-mice genetically selected for long attack latency (LAL) and short attack latency (SAL) differ in structural and functional properties of postsynaptic serotonergic-1A (5-HT(1A)) receptors. These mouse lines also show divergent behavioral responses in the forced swimming test (FST, i.e., higher immobility by LAL versus SAL mice). OBJECTIVES: We investigated whether the line difference in 5-HT(1A) receptors is associated with a difference in brain 5-HT metabolism, and whether acute administration of a 5-HT(1A) receptor agonist could differentially affect the behavioral responses of LAL and SAL mice. METHODS: 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels were measured in homogenates of several brain regions using high-performance liquid chromatography. The behavioral effect of the full 5-HT(1A) receptor agonist, 8-OH-DPAT, and of the somatodendritic 5-HT(1A) autoreceptor agonist, S-15535, was examined in the FST. The effect of 8-OH-DPAT on forced swimming-induced 5-HT metabolism in brain homogenates was determined. RESULTS: In most brain regions, 5-HT and 5-HIAA levels and 5-HT turnover were not significantly different between LAL and SAL mice. 8-OH-DPAT abolished the behavioral line difference in the FST by reducing immobility in LAL mice and reducing climbing in SAL mice. S-15535 induced a similar behavioral effect to 8-OH-DPAT in SAL mice, but did not alter the behavior of LAL mice. Compared with LAL, forced swimming elicited in SAL mice a higher brain 5-HT turnover, which was potently attenuated by 8-OH-DPAT. CONCLUSIONS: It is unlikely that the difference in 5-HT(1A) properties between LAL and SAL mice is an adaptive compensatory reaction to changes in 5-HT metabolism. Although unspecific motor effects, at least in SAL mice, cannot be ruled out, it is suggested that the behavioral effects of 8-OH-DPAT and S-15535 may be mediated by predominant activation of postsynaptic 5-HT(1A) receptors in LAL mice and by presynaptic 5-HT(1A) receptors in SAL mice.[Abstract] [Full Text] [Related] [New Search]